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FOREWORD

This is the first of three volumes of a final report entitled
"Buckling of Shells of Revolution with Various Wall Constructions". The

three volumes have the following titles:

Vol. 1 Numerical Results
Vol. 2 Basic Equations and Method of Solution

Vol. 3 User's Manual for B@SPR

The work described in these volumes was carried out under Contract NAS 1-6073

with the National Aeronautics and Space Administration. .
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ABSTRACT

Volume 1
Volume 1 presents the results of a parameter study performed with the

computer program B@SPR (Buckling Of Shells Of Revolution) which is described
in Volume 3. The axisymmetric collapse and the nonsymmetric bifurcation
buckling behavior is studied for cylinders, cones, and spherical and toroidal
shell segments subJected to axial compressive loads. Particular emphasis is
Placed on the effects of eccentricity in load application and on the

influence of elastic end rings.

Volume 2
Volume 2 presents the equations on which the computer program B¢S¢R is

based, as well as the method of solution of the equations. In addition, a

set of more general stability equations 1is glven in an appendix.

Volume 3
Volume 3 presents a comprehensive computer program (B¢S¢R) for the

analysis of shells of revolution with axisymmetric loading. The program
includes nonlinear prebuckling effects and is very general with respect to
geometry of meridian, shell wall design, edge conditions, and loading. Despite
1ts generality the program is easy to use. Branches are provided such that
for commonly occurring cases the input data involves only baslc information
such as geometrical and material properties. The computer program has

been verified by comparisons with other known solutions. The cards and a
computer listing for this program are available from COSMIC, University of

Georgia, Athens, Georgia, 30601.






NOTATTON

A, B refers to "A", "B" ends of shell meridian (see Fig. 1)
Cll value of Nl due to unit axial strain

e load eccentricity (see Fig. 1)

EIx bending stiffness of edge ring about axis in the plane of the ring
GJ torslonal stiffness of edge ring

Ml meridional bending moment

Nl meridional stress resultant

n circumferential waves in buckle pattern

P total axial load

T radius of edge ring

u shell wall displacement

v circumferential shell wall displacement

w normal displacement component 1n buckling mode

B meridional rotation

Subscripts

cr critical value of the load

H in horizontal (radial) direction
v in vertical (axial) direction

(o} prebuckling quantity

1l meridional dlrection

2 circumferential direction

vii
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Section 1

INTRODUCTION

A few years ago researchers in the field of shell stability analysis had
to be content with an analysis of highly idealized structures. In general only
1sotropic cylindrical or spherical shells were considered, and it was assumed
that the membrane solution presented a sufficiently accurate approximation
of the prebuckling state of stress. 1In addition the boundary conditions were
usually simplified. The increasing efficiency of the digital computer has
rapldly changed this situation. For a wide class of shells it is now possible

to perform stability analyses without unduly restrictive approximations.

For axlsymmetrically loaded shells of revolution the governing partial
differential equations can be reduced to ordinary differential equations through
separation of variables. An additional requlrement for separation of variables
1s that the shell exhibits "orthotropic behavior". That is,in the prebuckling
state axisymmetrical loads produce axisymmetrical displacements. By use
of the numerical integration, finlte difference,or finite element techniques,
it 1s now practical to solve with reasonable accuracy almost any buckling
problem for the type of shells discussed above. It is,for lnstance, easy
to include in the buckling eqﬁétions prebuckling quantities as they

are obtained from a nonlinear analysis. While nonlinear equations were



used for instance by Weinitschke (Ref. 1)and Budiansky (Ref. 2)for the
symmetrical snapping of spherical caps, the influence of the prebuckling
displacements on bifurcation buckling was first recognized by Stein (Ref. 3)for
cylindrical shells and by Huang (Ref. 4)for spherical caps. In cases such

as that treated by Stuhlman, et al in Ref. 5 with edge moments introducing

hoop stresses in the shell, it is lmperative that an accurate prebuckling
analysis be used. Other than cylindrical or spherical shells have been
considered by Sobel and Fltigge (Ref. 6), Bushmell (Refs. 7, 8) and by Cohen

(Ref. 9) and others



Section 2
COMPUTER PROGRAM

In the present investigation, a computer program (B¢S¢R) has been
derived for the elastic bucklling of shells of revolution. A complete
description of thls computer program is given in Volume 3 ("User's Manual
for B¢S¢R). The program can calculate axisymmetrical collapse loads as well
as blfurcation buckling loads, the latter with either a membrane solution or an
accurate nonlinear solution for the prebuckling displacements. The program
is easy to use but still general with respect to

1. geometry of meridian

2. type of wall construction
3. type of boundary conditions
L. type of loading

These obJectives have been achieved through provision of program branches with

minimum input in addition to the branch for the most general case.

For the geometry of the meridian the general branch of the computer
program calls for lnput in the form of cartesian coordinates for a number of
polnts along the meridian. Special branches are provided for cylindrical,

conical, spherical, and toroidal shells.

The general branch for the shell wall stiffness data calls for input in

the form of coefficients of the constitutive equations. Speclal branches



calling for simpler input data are provided for

. shells with ring and stringer stiffening
shells with skew stiffeners

. fiber reinforced (layered) shells
layered shells (isotropic or orthotropic)
corrugated ring stiffened shells

oW F w oo+

shells with one corrugated and one smooth skin (with rings)

The stiffness coefficients must be constant along the meridian.

The most general form of the boundary conditions for the prebuckling
analysis 1s a set of four nonhomogeneous equations containing twenty coefficients.
For the stability analysils, the homogeneous boundary conditions consist of
eight equations with sixty-four coefficients. The general branch of the
computer program calls for all these coefficients as input. Several branches
are provlided, however, through which the boundary conditions are calculated
internally with only control integers required as input. These branches
include force or displacement boundary conditions, support by elastic edge
rings, or support by an elastic medium. The shell can be open or closed

at the apex.

The following types of axlally symmetric loading conditions are

considered

1. uniform normal pressure

2. axial line loads at ends of shell

3. combination of uniform normal pressure and axial line loads
(which vary proportionally as the load is increased)

The axial load need not be applied at the neutral surface of the shell .



The coefficients of the constitutive equations and more details on the

boundary conditions are given in Volume 2 of this report.

As formulated in the computer program the analysis has two parts: In
the first part the two equations governing the prebuckling state of the shell are
golved. These are nonlinear, nonhomogeneous, second-order ordinary
differential equations. They were originally derived by Reissner (Ref. 10).
The Newton-Raphson procedure is used to solve the set of nonlinear algebraic
equations which result from a finite-difference analog of the differential
equations. The solution of the equations governing the prebuckled equilibrium
state ylelds the prebuckling meridional rotation and meridional and
clrcumferential stress resultants. These quantities appear as known variable

coefficients in the equations governing the stabllity of the equilibrium state.

In the second part of the analysis the stability equations (Donnell type
formulation) are solved. There are two linear, homogeneous, fourth-order,
partial differential equations for each mesh point. Dependence on the
circumferential coordinate can be eliminated as the dependent variables are
harmonic. The resulting ordinary differential equations are solved by the
method of finite-differences. The stability analysis 1s formulted as an
elgenvalue problem with the lowest eigenvalue of the stablility equations
corresponding to the critical load. The prebuckling and stability equations

are given in Volume 2.

The computer program has been used for the stability analysis of

eccentrically stiffened cylinders, conical frustrums, and spherical and



toroidal segments. Comparisons have been made with the test results of

Refs. 5 and 11 through 16.



Section 3
NUMERICAL RESULTS

The computer program discissed above has been verified through comparison
to previously known analytical or numerical solutions. It has been applied
also to a number of cases for which experimental analyses are available. Some
important points are revealed through comparison of theoretical and
experimental results. In addition certaln special effects have been studied
for stliffened cylindrical, conical, spherical and toroldal shells. The
parameter study has been concerned with the type of shell specimens which is
consldered 1n Ref. 5. The geometry for the different shells investigated

is shown in Fig. 1.

The accuracy in the numerical results depends on the number of points in
the finite difference mesh. Due to computer storage limitations this number
is not sllowed to exceed 100. This appears to be sufficlent for most practical
applications. Another complication is that with a large number of polnts
numerical difficulties may arise. Introduction of double precision programming
to overcome these difficulties would have to be compensated by a restriction
in the number of mesh points and thus would severely limit the scope of the
program. In a typlcal case, as the number of points 1s Ilncreased, the

corresponding critical load appears to approach a certain limit; further



increase may result in somewhat erratic values of the critical load.
Typical examples are shown in Tables la and 1b. The results of Table 1b are
plotted in Fig. 2. For short shells numerical difficulties generally occur
at a lower value of the number of points. However, in these cases fewer
points are needed. For cases in which the length of the shells shown in

Fig. 1 is Increased by a factor of four, no numerical difficulties occur

at or below the maximum number of points. Due to this fortunate state of
affairs it has been possible to obtain quite accurate results in almost all
cases for which a solution has been attempted. Exceptions to this are shells
with free edges or weak end rings, for which the buckling pattern 1s almost

inextensional.

3.1 Comparison to Other Theoretical Analyses

For monocoque cylinders under hydrostatic pressure, the buckling loads
obtained are in complete agreement with those given by Sobel (Ref. 17).
For monocoque cylinders under axial compression & comparison was made with
the results of Ref. 18. For shells with L/R = 0.7 and R/t = 100 and the
boundary conditions S1, Sk, and C2 (in the notations of Ref. 18), the
normslized critical loads are 0.869, 0.506, and 0.858. The corresponding results
presented in Ref. 18 are 0.876, 0.508, and 0.863. The difference (less
than one percent) is probably due to the use of a larger number of mesh polnts
and double precision arithmetic in Ref. 18. In Ref. 5 buckling loads are
given for the type of cylindrical shells shown in Fig. 1. Corresponding

results for cylinders 95 inches long were computed with the present program



and the agreement is reasonably good. The results of Ref. 5 are somewhat
higher (up to 10%) which could well be due to the fact that it is based on a
ope term Galerkin solution. Critical loads were computed also for

spherical shell segments under tension. The results were compared to the
theoretical results presented by Yao in Ref. 19. The present results were

2% to 3% lower than those obtained by Yao. For comparison with results
presented in Ref. 20 the critical load was also computed for two simply-
supporteéltoroidal segments. For a segment with positive Gaussian curvature
and external stiffeners, the critical tension load according to Ref. 20 (in
which linear membrane prebuckling theory is used) is 17788 1bs/in. at +the equator.
If a membrane prebuckling analysis is used for the same segment the present
program gives 17745 1bs/in and with the more accurate nonlinear prebuckling
analysis a critical tension load of 18383 lbs/in is obtained. The agreement
between the two analyses is good, and the influence of nonlinearity in the
prebuckling analysis is rather small. For a torolidal segment with negative
Gaussian curvature, Ref. 20 gives a critical compression load of 1913 lbs/in.
The present analysis gives 1690 lbs/in with membrane prebuckling analysis and

1686 lbs/in with nonllinear prebuckling theory.

3.2 Comparison to Test Results

Results from the present analysis compare well to test results for cylinders

of 95 inch length loaded through the center of the skin (Ref. 5). Three

8'"S.’mele-support" implies Nl =M} =u, =v=0
=0

"Cla.mped" implies uH = B =v = uv



separate tests gave buckling loads of 3440, 3550, and 3650 1bs/in, while

the computer program indicates a critical load of 3505 lbs/in.

A large number of stiffened cylinders were tested by Milligan et al,
Ref. 11. They also calculated the critical load and concluded that for
stiffened cylinders, theory and experiment are in agreement. The ratlio between
experimental and theoretical loads varies according to Ref. 11 from .81 to
1.28. One of the reasons for the surprisingly high values of this ratio is
that the theoretical analysis underestimates the stiffness of the shell wall.
The assumption is made that the stiffeners do not contribute to the bending or
extensional stiffness perpendicular to the stiffener direction. Also in some
cases the assumption of simple support results in theoretical values which
are too low. The present computer program was used to calculate the critical
loads for some of the cylinders for which test results are reported in Ref. 11l.
The theoretical and the experimental loads of Ref. 11, as well as the loads
from the present program, are given in Table 2. With membrane prebuckling
analysls, results are given both for simply-supported and for clamped
cylinders. Results with nonlinear prebuckling analysis are given only for
clamped shells. The shells tested by Milligan, et al (Ref. 11) had rather
insignificant stiffening. Therefore, 1t appears that their behavior should
not be too different from that of monocoque shells. It is noticed that the
relstion between results from the present theory and from the tests of Ref. 11

is in accordance with the experience for monocoque shells.

In Table 3 theoretical loads for some fiber wound cylinders are compared

to experimental loads reported in Refs. 12, 13, and 14. Results obtained with

10



membrane analysis are shown both for cylinders with simply supported and with
clamped ends. With the nonlinear prebuckling analysils critical loads were
obtained for clamped shells. It can be seen that the influence of nonlinearity
in the prebuckling analysisand the influence of rotational edge restraint

tend to cancel one another. The experimental results for falrly thick cylinders
were not included in the comparison. It appears that buckling of thick

cylinders 1s precipitated by a shear failure in the matrix. With one

exception experimental results range between 62 and 85 percent of the theoretical

results.

Card and Jones (Ref. 15) tested stringer stiffened cylinders with wall
thickness such that agreement between test and theory is to be expected. For
cylinder No. 3 in Ref. 15, the present program gives for simple support
edge conditlons critical loads of 1378 lbs/in with membrane prebuckling analysis
and 1451 lbs/in with nonlinear prebuckling analysis. If the cylinder is
consldered clamped the corresponding buckling loads are 2657 lbs/in and
2644 1bs/in. For the test specimen the edge conditlons were probably

reasonably close to complete clamping. The cylinder buckled at 2120 1bs/in.

For ring stiffened conical shells under axial compression some test
results are given in Ref. 16, together with an approximate formula for the
critical load. For the specimens designated 3-3 and 3-3A in Ref. 16, the
critical axial load according to the formula is 7510 kg. According to the
present theory axially symmetric buckling 1s critical. Buckling loads for the
two specimens are 6480 kg and 7100 kg respectively. The experimental

results are 5800 kg and 6000 kg.

11



3.3 Effect of Load Eccentricity

The effect of eccentricity in the load application was studied for shells
suach as bhose shown in Fig. 1. Results for cylindriéal and conical shells are
shown in Table 4. Critical axial loads were computed for the cases in which
the shells are simply supported at the midsurface of the skin, at the
neutral surface of the cross-section and at the midpoint of the rectangular
stiffeners. Clamped shells were also considered. For each type of loading
critical loads were obtained both for shells with external and with intermal
stiffening. The analysis is based on a finite difference mesh size equal to

1/50 of the shell length.

For comparison, critical loads are shown also as computed by use of
the membrane analysis. With a membrane prebuckling analysis and in the absence
of axial restraint there is no loading eccentriclity effect. The results from

the flrst three loading cases are identical.

It may be seen from Table 4 that the effect of the cone angle is small.
On the other hand, changes in the loading eccentricity have drastic effects
on the critical load. For the case 1n which the shell i1s loaded through its
neutral surface; for example, 1t is interesting to compare results obtained with
membrane prebuckling analysis to those obtained wlth nonllnear prebuckling
analyslis. The difference here 1s due to the Poisson expansion in
connection with radial restraint at the edges. This effect 1s surprisingly

large, particularly for shells with outside stiffening.

12



For shells with end moments it 1s easy to see that the presence of a
moment which tends to bend the cylinder into a barrel shape greatly increases
the critical load. A moment in the other direction, developing prebuckling
compressive hoop stresses, has the opposite effect. Prebuckling displacements
(uHo) and buckling modes (w) are shown for cylinders with inside stiffening
in Figs. 3 and 4. Fig. 3 corresponds to loading through the neutral surface
and Fig. 4 to loading through the center of the stiffeners. Fig. 5 shows
prebuckling displacements and buckling modes for conical shells which are

elther clamped or simply supported and loaded through the center of the skin.

For the cylindrical and conical shells, bifurcation occurs at loads
which are amall firactlons of the loads at which axisymmetrical collapse would
occur. For axially compressed spherical and toroidal segments, such as
shown in Fig. 1, bifurcation buckling usually occurs close to the collapse

loads. The prebuckling displacements are then very large.

Table 5 gives buckling loads for axlially compressed, eccentrically
stiffened spherical and toroidal segments (See Fig. 1). Two loads are given
for each case, a load corresponding to bifurcation buckling (n # O) and a
load corresponding to axisymmetric collapse (n = 0). The spherical and toroidal
segments with external stiffeners buckle nonsymmetrically at lower loads than those
with internal stiffeners. Eccentrically stiffened cylindrical and conical
shells exhibit the opposite behavior. This 1s not so surprising since non-
symmetric buckling occurs at loads which are close to the axisymmetric
collapse load. The collapse load is found to be higher for shells with

inside stiffeners. The critical wave number for toroidal segments is higher

13



than that for spherical segments. In the case of a toroldal segment with the
load applied through the center of the outside stiffeners, the resulting
meridional end moments cause considerable hoop compression near the edges. The
critical wave number (65) in this case, is far above the others because
buckling is primarily due to this hoop compression. Similar hoop stresses
occur for spherical shells and also for shells with inslde stiffening loaded
through the center of the skin. In these cases, however, the buckling load

corresponding to critical axlal compression is still lower.

Figure 6 gives a prebuckling load-deflection curve for a spherical segment
with internal stiffeners. The load is applied at the middle surface of the skin
(shear center). This figure illustrates the method in which a collapse load
is calculated. The axisymmetric prebuckling displacements and stresses are

first calculated for P/2TTCl = 0.3. The load is increased in increments

1

of P/2rrCll = 0.1 until at P/2nCl = 0.7 the Newton-Raphson process falls to

1
converge. The step size is then decreased and P/21'TCll set equal to 0.6
plus the new increment. At P/2'nCll = 0.82 the prebuckling solution again
fails to converge, and the step size 1s again decreased. Calculations
continue in this manner until the step size 1s smaller than some pre-
assigned value (in this case .00l of the initial step size) at which point

they terminate. The shell 1s judged to have collapsed axisymmetrically at

the highest value of the load for which a solutlon was obtained.

With too large an initial step size 1t is possible to jump over a collapse
load and find solutions to the prebuckling equations on another branch

which may or may not represent unstable equilibrium. Such an upper branch

14



is shown in Fig. 6. The sign of the stability determinant for n = O generally
changes from one branch to another, but the stability determinant fof n#o
does not necessarily change sign. When calculating buckling loads for n £0,
one must make the initial step size small enough to guarantee that a collapse

load is not bypassed in the search for the lowest bifurcation load.

Figure 7 shows a prebuckling load-deflectlon curve for a spherical
segment with external stiffeners, with the load applied thmwugh the centroid
of the stiffeners. Two branches are shown, and the deflection patterns uHO(s)

assocliated with each branch are indicated.

Figure 8 glves displacements corresponding to the two branches of the
load-deflection curve plotted in Fig. 6 . Collapse occurs at P/21TCll = 0.81k.
The upper branch (dotted lines) represents unstable equilibrium, since an

increase in load corresponds to a decrease in dlsplacement.

Figure 9 shows the buckling mode for the shell , for which the pre-~
buckling behavior is shown in Figs. 6 and 8 . The shell buckles into 8

waves at a load about 20% below the collapse load (See Table 5).

Figures 10 and 11 show the prebuckling displacements and buckling mode
shape for a clamped spherical segment with internal stiffeners. It is noted
that agaln there are two branches of the prebuckling load-deflection curve.
The shell collapses at P/2nCll = 1.05, but solutions of the prebuckling
equilibrium equations exist for higher loads than this. In Fig. 10 it can
be seen that the upper branch represents stable equilibrium, that is

deflection increases with load.

15



Figures 12 and 13 show the prebuckling behavior and buckling mode of a
clamped spherical segment with external stiffeners. Again, the prebuckling
displacements correspond to two branches of the load-deflection curve. 1In
this case the upper branch is unstable. The shell buckles into 6

circumferential waves at a load not far below the collapse load.

Figures 14 through 18 present numerical results for eccentrically
stiffened toroidal segments (See Fig. 5 for geometry). In Fig. 1k are shown
load-deflection curves for internally stiffened toroidal segments loaded at
the shear center, the neutral surface, and the centroids of the stiffeners.

FPor all three cases the collapse loads are falrly close.

Figures 15 and 16 show the prebuckling radial displacements for externally
stiffened toroidal segments loaded respectively through the neutral surface
and through the centroid of the stiffeners. Shells loaded through the
neutral surface tend to deflect outward near the edge and inward near the
equator. The large meridional bending moment caused by loading the shell
through the centroid of the external stiffeners forces it to deflect inward

near the edge and outward near the equator.

Figures 17 and 18 present prebuckling and buckling dlsplacements for the
same cases for which prebuckling data are presented in Figs. 15 and 16. There
are two buckling modes shown in Fig. 17, one corresponding to n = 10 and one
corresponding to n = 70. This particular case exhiblts two minima in the
curve Pcr versus n. The minimum at n = 10 corresponds to buckling in which the
primary cause 1s the compressive meridional stress resultant NlO' The

somewhat higher minimum at n = 70 corresponds to buckling in which the primary

16



cause is the compressive prebuckling hoop stress resultant N_. at the equator.

20

Figure 18 shows the prebuckling and buckling displacements for the
externally stiffened toroidal segment loaded through the centroids of the
stiffeners. The large meridional bending moment thus produced causes hoop
compression to develop near the edge, and this compression causes buckling
into a high number of circumferential waves. As in the previous case, this case
exhibits two minima in the curve Pcr versus n. However, the minimum at the higher
wave number 65 is the lower of the two. The corresponding buckle pattern
1s very different from that for m = 70 shown in Fig. 17, because the

maximum hoop compression occurs near the edge rather than at the equator.

3.4 Shells with Edge Rings

Bifurcation buckling of eccentrically stiffened shells with edge rings
falls into two classes: If the edge rings are not very stiff, the shells
buckle almost inextensionally with n = 2 at loads which can be many orders of
magnitude smaller than the buckling loads for clamped shells. Cohen (Ref. 21)
found such loads for axially compressed monocoque cylindrical shells. If the
ring stiffness exceeds some critical value (see Fig. 19), the shells buckle
with n > 2 at loads comparable to the buckling loads for clamped edges, and

the buckle pattern is no longer inextensional.

Figure 19 shows the critical axial loads for an internally stiffened 5°
cone supported by edge rings of square cross-section. The centroid of the

rings colinclides wlth the shear center of the shell wall. The length of the

17



cone 1s 95 inches and the radius of the parallel circle at the mid-length is

198 inches. From Fig. 19 it 1s seen that shells with edge rings

less than 9.4 inches thick buckle with n = 2 at loads which decrease sharply
as the size of the ring decreases. For rings larger than 9.4 inches in
thickness , the shell buckles with n = 20 at loads very near that for clamped
edges. The buckling load corresponding to simply-supported edges is also

shown in the figure.

Figure 20 shows the modal displacements of the "inextensional" (n = 2)
mode for ring thicknesses t  of 2.608 and T7.824 inches. Modal displacement uy
and v are shown. For tr = 2.608 the generators remain practically undeformed
during buckling. The thicker ring t = 7.824 clearly forces the generators

to deform during buckling.

Figure 21 shows normalized buckling loads for ring-supported conical shells
versus the number of meridional stations in the finite-difference scheme.
The loads are normalized by Plimit , the value that P seems to approach as
the number of meridional stations is varied. For small rings it is clear that
numerical difficulties occur wlth increasing numbers of polnts before
convergence has been achleved. It appears that the problem as formulated in
the stability equations is 111 conditioned for the case in which the generators

remain undeformed (inextensional buckling).For rings with t, = 2.608 , 3.912 ,

and 5.216 the solution has stabilized before numerical difficulties occur.

18



Flgure 22 shows buckling loads for ring-supported spherical segments of
the geometry shown in Fig. 1 The "inextensional" mode (n = 2) is
antisymmetric about the midlength of the segment; the mode corresponding to
bifurcation of clamped segments is symmetric about the midlength. The curve
for antisymmetric buckling (n = 2) crosses that for symmetric buckling

(n = 6) at values of t, which are surprisingly large.

Figure 23 1s simllar to Fig. 21: It shows the convergence properties
of the "inextensional" (n = 2) buckling mode with number of meridional
stations on the spherical segment. Again, convergence lmproves as the ring

slze lncreases.

For a cylindrical shell the influence of an end ring is studied for
the case 1in which the inextensional pattern 1s suppressed through use of edge
support. The ring is fixed at its centroid in the axial, circumferentlial,
and radial directions, but is free to rotate. The results are shown in Fig. 2L.
The somewhat pecullar form of the curve emphasizes a phenomenon which is
often overlooked: there are two sets of boundary conditions which effect the
buckling load, that governing the axisymmetric prebuckling behavior, and that
governing nonsymmetric buckiing. In the present example the ring cross-
section 1is allowed to rotate only. If the stiffness K 1s defined as the edge
moment per unit rotatlion applled by the ring to the shell, then for axisymmetric
prebuckling deformation Kb = EIx/r2 » and for harmonic buckling deformations
with n waves K = (EIx + n2GJ)/r2 - In this case the bending stiffness EI_
1s approximately equal to the torsional stiffness GJ, and the wave number

n 1s large. Hence KB is much bigger than Kb. which gives rise to two reglons

19



in the curve of Fig. 24. When tr is less than about 3 inches the increase
in critical load with ring size is due primarily to the increase in the ring
torsional stiffness, which governs the restraint against edge rotation in the
buckling mode. This observation is supported by the curve in Fig. 2k

labeled “"Membrane Prebuckling Analysis". The curve rapidly approaches an
asymptote which corresponds to clamped shells. When tr is greater than
about 3 inches, the increase in critical load with ring size 1is due primarily
to the increase in the ring bending stiffness, which governs the restraint
against edge rotation in the prebuckling phase. 1In comparison to the results
presented in Ref. 21 and 22 a very heavy ring is needed before clamped
conditions are approached. This is of course connected with the fact that
the shell considered here is very short and has a large bending stiffness in
the axial direction. The value of the critical load for zero ring thickness
is not the same as the value for simple support, since "simple support" implies
no axlal restraint. The presence of axial restraint increases the critical

load from.3020 to 4588 1bs/in.
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Table la Critical Axial Load as Function
of Mesh Size
(Shells shown in Fig. 1)

10° Cone
Loaded through Skin
Simply Supporteda
External Stiffening

NUMBER OF MERIDIONAL CRITICAL LOAD
INTERVALS w3p
i9 4006
29 4010
39 4013
el 4013
59 4015
69 Lhoik
79 Lokl
89 4220
99 4185

an

Simple Support" implies M, = Nl =ug =vs= 0
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Table 1b Critical Axisl Ioad as Function
of Mesh Size (Shells shown in Fig. 1)

Cylinder
Clampeda
External Stiffening

NUMBER OF MERIDIONAL CRITICAL LOAD
INTERVALS N
(ON HALF IENGTH) er
15 TTh2
17 7157
20 7771
21 7774
23 7780
25 7782
27 7788
28 7788
29 7791
30 7797
31 7788
33 7Tk
35 7795
37 7801
Lo 77T
45 7823

a"Clamped" implies uy = g=v=u_=0
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Table 2 Buckling Loads of Stiffened Cylinders

Membrane Nonlinear
Prebuckling Prebuckliqg
Cyl. Theory Simple
No. Ref. 11 Support Clamped Clamped Experiment
Rer. 11
13 228 283 337(15) 293(1k4) 185
1L 239 265 3h5(14) 302(14) 206
15 265 321 335(14) | 303(1k) 230
16 318 382 386(13) 346(13) 268
22 92 117 158(16) 157(16) 99
23 101 124 173(15) 169(1k4) 96
2L 207 246 298(15) 290(1k) 204
25 178 221 226(15) 203(16) 160
26 252 289 317(13) 311(12) a2kl
27 285 337 hio(1k) Lo6(12) 234
28 131 153 206(15) 186(15) 117
31 282 3ks 351(15) 325(14) 228
36 316 364 383(1k4) 366(13) 256
38 265 333 338(15) | 330(1k4) 231
4 290 354 418(13) Lo8(12) 297
L3 117 146 200(14) 202(14) 150

Buckling loads in 1lbs/in
Numbers in parens indicate critical wave numbers.
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Table 3 Buckling of Fiber Reinforced
Cylinders
o T Membrane
Prebuckling Nonlinear
Simple Prebuck.
Ref. No. Support Clamped Clamped Experiment
B o ) - a
12 1 710 711 699(11) 598
" 2 1035 1045 1028(10) 765
" 3 1203 1211, 1181(10) 850
" L 1289 1293 1241(10) T75
13 3 469 469 463(11) 337
" b L3 W73 L66(11) 373
" 6a 330 330 325(13) 272
" Ta 318 318 314(13) 335
" 9 248 248 2hs5(15) 200
1k 1 726 728 713(11) 609
" 2 To6 728 713(11) 622
" 3 T26 728 713(11) 629
" L 726 728 713(11) 650

a Buckling loads in lbs/in
Numbers in parens indicate number of circumferentlal waves in
buckle pattern
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Table 4 Buckling Loads (millions

of 1bs.) for Eccentrically

Stiffened Aluminum Cylindrical and Conical Shells

BOUNDARY INTERNAL STTFFENING EXTERNAL STIFFENING
CONDITION .
CODE NO* CYL 5° Cone 10° Cone CYL 5° Cone 10° Cone
Nonlinear 1 | 2.670 (18)° | 1.650 (18) 1.600 (18) | 3.770 (19) | 3.730 (19) | 3.620 (18)
Pre- 2 1.250 (20) 1.240 (19) 1.200 (19) | 4.350 (17) 4.300 (17) L.160 (17)
buckliog |5 | 3580 (1) | 3.sbo (1) | 3.480 (1) | 1235 (26) | L.235 (16) | L.200 (26)
bo| b.5ko (20) | k.hBo (20) 4.330 (19) | 9.620 (15) | 9.570 (15) | 9.100 (15)
Membrane 1,2,3 | 1.520 (18) 1.485 (18) 1.440 (18) | 2.700 (21) 2.640 (21) 2.570 (20)
Pre- b1 3.670 (21) 3.820 (21) 3.620 (21) | 6.060 (22) | 5.920 (22) | s5.7h0 (22)
buckling
Analysis

aBoundary Condition Code: Axial load applied at
1.

2
3.
L

bNumbers in

neutral surface

. shear center
centroid of stiffener
. shell clamped

parens indicate number of circumferential waves in buckle pattern




Table 5 Buckling Loads (1b/in at equator) for
Eccentrically Stiffened Aluminum
Spherical and Toroidal Segments

BOUNDARY INTERNAL STIFFENING EXTERNAI STIFFENING

CONDITION —_— R N
COLE NO.8 SPHERE TORUS SPHERE TORUS

1 9190 (8)b 9090 (11) 7200 (8) 7300 (10)
2 9650 (8) 10000 (10) 6900 (8) 6800 (11)

?i;cation 3 8280 (9) 7620 (11) | no bifurcation 5650 (65)
L 12880 (6) 12900 ( 7) 10500 (6) 10670 ( 7)
1 10100 (0) 10720 ( 0) 7690 (0) 8250 ( 0)
2 10250 (0) 10950 ( 0) 7575 (0) 8150 ( 0)

Collapse {:? 9650 (0) 10400 ( 0) 8400 (0) 8540 ( 0)
L ( 0) 11400 (0) 11040 ( O)

13250 (0) 13400

aBoundary Condition Code: Axlal load applied at
. neutral surface

. shear center

centroid of stiffener

. shell clamped

Fwn e

bNumbers in parens indicate number of circumferential waves in buckle pattern.
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le] =0, 0.247,
0.925 | A
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Shell wall i

Stiffener

R = 198 in.

Section AA

Fig. 1 Geometry of cylinders, cones, spherical segments, and toroidal segments
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Fig. 2 Critical Axial Load as function of mesh size for cylinder shown in Fig. 1
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MODAL DISPLACEMENT,
PREBUCKLING DISPLACEMENT
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Fig. 3 Prebuckling and buckling displacements of an internally stiffened

gimply supported cylinder
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MODAL DISPLACEMENT,
PREBUCKLING DISPLACEMENT
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Fig. 4 Prebuckling and buckling displacements of an internally stiffened
simply supported cylinder loaded at the centroids of the stiffeners
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Fig. 5 Prebuckling and buckling displacements of simply-supported and clamped,
internally stiffened, 5-deg cones loaded in axial compression through the

shear center
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Fig. 6 Prebuckling load-deflection curve for an internally stiffened, simply supported
spherical segment loaded in axial compression through the shear center
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spherical segment loaded in axial compression through the centroids of the
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PREBUCKLING HORIZONTAL (RADIAL) DISPLACEMENT (in.)

Fig. 8
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Prebuckling displacements of an internally stiffened, simply supported
spherical segment loaded in axial compression through the shear center
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Fig. 9 Buckling mode shape for internally stiffened spherical segment loaded in
axial compression through the shear center
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Fig. 12 Prebuckling displacements of an externally stiffened spherical segment
loaded in axial compression and clamped at the edges
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Fig. 14 Load-deflection curves for axially compressed, simply supported
toroidal segments
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Fig. 15 Prebuckling displacements of externally stiffened, simply supported
toruvidal segments loaded in axial compression at the neutral surface
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Fig. 16 Prebuckling displacements of externally stiffened, simply supported
toroidal segments loaded in axial compression through the centroids
of the stiffeners
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